
28 570684 Ch22.qxd 3/31/04 2:59 PM Page 282

282 Part IV: C Level

Another way to argue with a function
This book shows you the modern, convenient
way of declaring variables (or arguments) shuf­

void jerk(int repeat, char c);
{
and so on. . . .

void jerk(repeat, c)
int repeat;
char c;
{
and so on...

little more confusing because the variable name
is introduced first and then the “what it is dec­
laration” comes on the following line (or lines).
Otherwise, the two are the same.

My advice is to stick with the format used in this
book and try not to be alarmed if you see the
other format used. Older C references may use
the second format, and certain fogey C pro­
grammers may adhere to it. Beware!

fled off to a function. To wit:

You can also use the original format:

This declaration does the same thing, but it’s a

Functions That Return Stuff

For some functions to properly funct, they must return a value. You pass
along your birthday, and the function magically tells you how old you are
(and then the computer giggles at you). This process is known as returning a
value, and a heck of a lot of functions do that.

Something for your troubles
To return a value, a function must obey these two rules:

Warning! Rules approaching.

� The function has to be defined as a certain type (int, char, or float, for
example — just like a variable). Use something other than void.

� The function has to return a value.

The function type tells you what type of value it returns. For example:

int birthday(int date);

The function birthday() is defined on this line. It’s an integer function and
returns an integer value. (It also requires an integer parameter, date, which it
uses as input.)

